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Abstract—Conventional dynamic thermal management (DTM)
assumes that the thermal resistance of a heat-sink is a given con-
stant determined at design time. However, the thermal resistance of
a common forced-convection heat sink is inversely proportional to
the flow rate of the air or coolant at the expense of the cooling power
consumption. The die temperature of the silicon devices strongly
affects its leakage power consumption and reliability, and it can be
changed by adjusting the thermal resistance of the cooling devices.
Different from conventional DTM which aims to avoid the thermal
emergency, our proposed DTM regards the thermal resistance of
a forced-convection heat sink as a control variable, and minimize
the total power consumption both for computation and cooling.
We control the cooling power consumption together with the mi-
croprocessor clock frequency and supply voltage, and track the
energy-optimal die temperature. Consequently, we reduce a sig-
nificant amount of the temperature-dependent leakage power con-
sumption of the microprocessor while spending a bit higher cooling
power than conventional DTM, and eventually consume less total
power. Experimental results show the proposed DTM saves up to
8.2% of the total energy compared with a baseline DTM approach.
Our proposed DTM also enhances the Failures in Time (FIT) up to
80% in terms of the electromigration lifetime reliability.

Index Terms—Dynamic thermal management (DTM), heat sink,
liquid cooling, reliability, temperature-dependent leakage power.

I. INTRODUCTION

T RANSISTOR scaling has been resulting in explosive
power density increase. So far, elaborated device-level

low-power techniques mitigate the thermal issues of large-scale
semiconductor devices, and high-level dynamic thermal man-
agement (DTM) also plays an important role. Such DTM
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techniques basically reduce the source of the heat, but effi-
cient heat dissipation is equally important to avoid thermal
emergency. Consequently, high-performance systems are often
equipped with active cooling mechanisms that reduce the
thermal resistance of the heat sinks by the use of active devices
such as fans and pumps. These active cooling methods include
air-cooled heat sink, liquid cooling, thermoelectric cooling, and
so on. A large-scale server cluster such as a datacenter, even
uses air conditioners for better cooling efficiency.

A common characteristic of active cooling devices is that
their thermal resistance is controllable; more cooling power, less
thermal resistance. The thermal resistance of a forced-convec-
tion heat sink is inversely proportional to the rotational speed of
the fan and the pump. For instance, the thermal resistance of an
air-cooled forced-convection heat sink is determined by the fan
rotational speed. A typical cooling fan is driven by a brushless
DC motor with a feedback speed controller, such that the fan
speed can be controlled by software. A higher speed produces
a lower thermal resistance at the expense of power consump-
tion. Typical operating systems are able to control the cooling
fan speed by setting an external register.

If we do not care about the cooling power consumption,
operating the active cooling devices at the maximum speed
results in the least thermal resistance and thus the most efficient
cooling. However, the power consumption is one of the most
important metrics to be optimized for large-scale servers as
well as for battery-operated systems. It goes without saying
that the ultimate DTM should minimize the total power con-
sumption, both computation and cooling power, avoiding the
thermal emergency and keeping required performance of the
system. We can achieve the goal if we jointly optimize the
computation and cooling power, which is possible when we
regard the thermal resistance of an active cooling device as a
control variable together with common DTM control knobs.
Unfortunately, none of previous DTM regards the thermal
resistance of an active cooling device controllable. Instead, it
is considered as a design-time given constant. This paper is
the first work that addresses: i) thermal resistance of an active
cooling device as a control variable for DTM and ii) a total
energy-optimal DTM that jointly optimizes the computation
and cooling power.

A lower thermal resistance of a cooling device reduces the
thermal equilibrium temperature. This again reduces the tem-
perature-dependent leakage power because the subthreshold
leakage power is proportional to the die temperature. Thus,
more cooling power results in less computation power even
if the die temperature does not affect the dynamic power.
Although commercial systems are capable of controlling the
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cooling device operating speed, their cooling device control
strategies do not consider the total power consumption. In this
paper, we introduce a systematic design framework to achieve
both avoidance of the thermal emergency and less total power
consumption.

The major contribution of this paper is summarized as fol-
lows: We introduce a new DTM technique in such a way that the
power consumption of a microprocessor and its cooling device
are jointly minimized. We formulate and solve an optimization
problem where the temperature-dependent leakage power con-
sumption of the microprocessor and the power consumption of
the cooling device form a convex function. Experimental results
show that the proposed DTM saves up to 8.2% of the total en-
ergy compared with a baseline DTM approach. Our proposed
DTM also enhances the reliability up to 80% in terms of Failure
in Time (FIT) for the electromigration.

II. RELATED WORK

Most DTM techniques reduce the power consumption and in
turn the die temperature. Common techniques include dynamic
frequency scaling (DFS), dynamic voltage and frequency
scaling (DVFS), decode throttling, speculation control, and
I-cache toggling at the expense of the throughput [2]. There-
fore, one typical DTM problem setup is maximization of the
throughput while meeting the thermal constraints. It turns out
that reaching the maximum allowable die temperature as soon
as possible and keeping track of that temperature results in
the maximum throughput [3]. Another approach addresses the
problem of optimizing the performance of a set of periodic
tasks using the discrete voltage/frequency states available on
actual processors [4]. Both approaches optimize the throughput
in a multiple-task environment. Another important problem
setup is real-time task scheduling under thermal constraints. A
new task scheduling considers the effect of the microprocessor
temperature [5]. A recent work introduces practical aspects that
should be considered in a task scheduling [6].

The quality of DTM is largely dependent on the quality of
the power and thermal model. As transistor scaling progresses,
DTM considers leakage power especially when DVFS controls
the power consumption [7]. One of the most significant leakage
power sources, subthreshold leakage, exponentially increases
by temperature. Therefore, it is important to consider the tem-
perature dependent leakage power in DTM for modern micro-
processors [8]. The temperature-dependent leakage power re-
sults in a circular dependency between the power and temper-
ature, and thus a proper DTM method should resolve the com-
plexity of the solution method [9]. A practical DTM is not fea-
sible when only the microprocessor is accounted for, and thus
system-level modeling should be considered especially for web
farm and server systems [10], [11].

Generally, semiconductor dies do not heat up evenly, but gen-
erate thermal hotspots. Identification of hotspots is important
because a part of malfunction in a semiconductor device may
incur complete failure of the entire system. Thermal sensors
effectively measure the die temperature online, but their proper
allocations significantly affect the correct hotspot identification
[12]. The density of thermal sensors increases not only the
quality of the hotspot identification, but also the cost and design

complexity of a semiconductor device. A soft thermal sensing
help reduce the number of thermal sensors [13].

A predictive DTM may enhance the performance of multi-
media applications because information about the future work-
load helps increase the performance of DTM as in dynamic
power management [14]. Practical DTM methods should con-
sider discrete DVFS because most commercial microprocessors
allow discrete frequency and voltage levels [4]. Modern DTM
techniques accommodate multiprocessor environments because
thermal constraints discourage the use of a high clock frequency
single core microprocessor [15]. Thermal simulation such as
HotSpot [16] is widely used to validate the thermal behavior
taking advantage of the simulation over measurement.

None of the work mentioned above deals with the optimality
of the total energy consumption of a system. As explained
earlier, existing DTM schemes primarily focus on avoiding
thermal emergency while considering the thermal resistance of
the cooling devices as a constant.

III. POWER AND THERMAL MODELS

A. Temperature-Aware Microprocessor Power Model

We characterize the power consumption model of a micro-
processor with the following parameters: the effective switching
capacitance , the supply voltage , the operating clock fre-
quency , and the technology constant . The power con-
sumption of a CPU is expressed as

(1)

where and , respectively, are the dynamic, static, and
always-on power consumption. The dynamic power consump-
tion is given by

(2)

We consider the two major leakage power sources in the static
power model, which are subthreshold leakage and gate leakage
power. The static power consumption is dependent on the die
temperature , which can be expressed as follows:

(3)

We expand the right-hand side of (3) as a Taylor series and retain
its linear terms

(4)

where is a reference temperature, which is usually an average
value within the typical die temperature range. This lineariza-
tion is subject to an error of less than 5% within an ordinary
temperature range of 25 C to 120 C [17].

While this model provides relatively accurate power estima-
tion, it does not reflect local hotspots. We exclude spatial varia-
tions in temperature from discussion without loss of generality



342 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Fig. 1. RC-thermal circuit model with a variable thermal resistance.

Fig. 2. The effect of a variable thermal resistance, achieved by controlling the
cooling device, on the thermal equilibrium die temperature. (a) Variation in
� � and� � with dynamic power � . (b) Variation in� � and� �
with thermal resistance � � .

to avoid from divergence of the paper context. However, our fu-
ture work will include the spatial variations.

B. RC-Thermal Model

We devise a new RC-thermal model adopting a variable re-
sistor that replaces the fixed resistor in [16] and [18], as shown
in Fig. 1. This makes the problem statement and the solution
completely different from previous DTM problems. The thermal
model includes characteristic parameters such that is the
thermal capacitance of the die; is the thermal resistance
from the die to the package combined with its heat sink; is
the thermal capacitance of the package combined with its heat
sink; is the heat dissipated by the heat sink; is the temper-
ature of the heat sink; and is the ambient temperature. The
thermal circuit in Fig. 1 can be rewritten as

(5)

(6)

Fig. 2(a) shows a conventional thermal management schemes
in which the thermal resistance of the heat-sink, with or without
a cooling device, is constant. In this case, the thermal equilib-
rium die temperature can be obtained as follows:

(7)

If increases, the lower dot-dashed curve in Fig. 2(a) goes
up [marked ], and both and at thermal equilibrium
increase [marked and ]. The amount of the increase in

is larger than that in because the temperature-dependent
leakage power increases more as temperature increases.

A change in the thermal resistance results in different slope
of the line [ in Fig. 2(b)]. If the thermal resistance

were zero, which cannot of course happen in reality,
would be . A lower thermal resistance of the cooling device
produce a lower equilibrium . A lower thermal resistance re-
duces [ in Fig. 2(b)] and thus the leakage power [ of
Fig. 2(b)]. If the amount of reduction in the temperature-depen-
dent leakage power is larger than the additional power used by
the cooling devices, the total power consumption is reduced.

We formulate a total power model which combines tem-
perature-dependent leakage power and thermal resistance in a
thermal equilibrium

(8)

where the temperature-dependent leakage power is lin-
earized such that and

. We derive the power consumption of the
cooling devices from following cooling device models.

C. Forced-Convection Air-Cooled Heat Sink Model

One of the most common types of cooling devices is a forced-
convection air-cooled heat sink. It consists of a heat sink made of
a low thermal resistance material such as copper and aluminum
and a cooling fan that circulates ambient air through the heat
sink.

The temperature of the microprocessor is determined by the
amount of heat transferred from the device to the ambient air.
The thermal resistance varies with the amount of convection,
which is determined by the speed of the cooling fan. A typ-
ical forced-convection heat sink has an encoder that reads the
speed of the fan. The microprocessor is equipped with tempera-
ture sensors, and controls the fan speed using pulse width mod-
ulation (PWM).

We model the thermal resistance of a heat sink as a
function of the power of the fan . Among the analytical
models of a forced-convection air-cooled heat sink [19]–[21],
we use the thermal exchanger [19] to evaluate the effect of flow
rate through the channel precisely. The thermal resistance model
is given by

(9)

where is the mass flow rate; is the velocity
of the air; is the density of the air; is the cross-sectional
area of the air channel; is the specific heat of the air;
is the effective area of the heat sink;
is the heat transfer coefficient of the heat sink, in which the
Nusselt number can in turn be approximated as a function
of the Reynolds number; is the Reynolds
number; is the hydraulic diameter of the air channel;
is the viscosity of the air; and is the thermal conductivity of
the heat sink material. We represent the thermal resistance as a
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Fig. 3. The thermal resistance and power consumption of a forced-convec-
tion heat sink composed of a parallel plate copper fin heat sink (70 mm� 70
mm� 50 mm) and a 70 mm cooling fan.

function of with physical coefficients , and as
follows:

(10)

The flow rate and the velocity of the air are determined by the
speed of the fan for a fixed air channel. The energy consumed
for rotating the fan is the same as the energy required to deliver
the air by the conservation of energy

(11)

The efficiency of air delivery is determined by factors which
include the shape of the channel and friction. The thermal re-
sistance of a forced-convection heat sink can be expressed as
a function of its power consumption by substituting (11) into
(10). So, we manipulate the thermal resistance denoted in (10)
by changing rather than .

Fig. 3 visualizes the tradeoff relationship between the thermal
resistance of the heat sink and cooling fan power consumption.
We measure the power consumption of the fan and the flow rate,
and derive the associated thermal resistance values by (10) with
the physical parameters of a CNPS-9700NT forced-convection
air-cooled heat sink from Zalman Tech [22].

D. Liquid Cooler Model

Liquid cooling device is also a heat exchanger. It is able to
transfer the large amount of heat, but it generally consumes
much more power than that of air-cooled heat sink. A lower
thermal resistance develops a higher cooling efficiency, but de-
velopment of a lower thermal resistance requires more cooling
power consumption. The liquid coolers is able to achieve lower
thermal resistance with sufficient power, but it shows higher
thermal resistance than the air-cooled heat-sink when the same
amount of power is supplied, as shown in Figs. 3 and 4.

To develop an analytical model for the liquid cooling devices,
we use an water-cooled single-phase rectangular channel heat
sink model [23], [24]. Common liquid cooler for the computing
system can be modeled as a single-phase heat exchanger which
does not change the phase of the coolant, i.e., the liquid (water)

Fig. 4. The thermal resistance and power consumption of a liquid cooling heat
sink composed of a Aluminum cooling block (40 mm� 40 mm� 10 mm) with
3/8” liquid channel and a liquid pump.

Fig. 5. Thermal model of liquid cooler as a variable thermal resistance.

does not vaporize in the cooling system. We model the thermal
resistance as a function of the pump power consumption.

A liquid cooling system consist of a cooling block for the
cooling of a microprocessor and an external radiator for the
cooling of coolant. Therefore, a generalized thermal resistance
model of the heat sink consists of two variable resistors, as
shown in Fig. 5(a). However, we consider the thermal resis-
tance of the radiator as a constant keeping the external radiator
fan speed fixed while we change the liquid pump flow rate
[Fig. 5(b)]. As a result, the thermal resistance has been sim-
plified to one variable thermal resistance [Fig. 5(c)]. To keep
focus on the joint optimization framework, we use a single
variable resistance model for the liquid cooling system. The
major contribution of this paper is a joint optimization of the
cooling power and computation power with active cooling
system that can change the thermal resistance by changing the
cooling power. The proposed framework for the cooling and
computation joint optimization can be applied as long as the
thermal resistance is a function of the power consumption.

The thermal resistance between the heat sink to the coolant is
expressed as follows:

(12)

The heat transfer coefficient is given by

(13)

where is the specific heat of the coolant and , and
are the velocity, density, and viscosity of coolant, respec-

tively. The Colburn factor is a function of Reynolds number.
The form of the function is changed according to the range of
Reynolds number.
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The power consumption of the pump is proportional to the
pressure drop and the volumetric flow rate of the coolant

(14)

where the frictional pressure drop can be calculated as

(15)

where is the channel length, and is the hydraulic diam-
eter of the coolant channel.

Fig. 4 visualizes the tradeoff relationship between the thermal
resistance of the cooling block and the pump power consump-
tion. We measure the power consumption of pump and the flow
rate, and derive the associated thermal resistance values by (12)
with the physical parameters of a Bigwater770 liquid-cooled
heat sink from Thermaltake [25].

E. Verification of the Power and Thermal Models

We verify the accuracy of our approximated analytical
models with HotSpot simulation. The exponential tempera-
ture-dependent leakage power model [8] is integrated to the
Hotspot. We also modify HotSpot [16] so that the thermal
resistance of the cooling device can be changed during runtime
to accommodate an adjustable cooling devices, and integrated
it with Wattch [26], [27]. We conduct simulation of the Intel
Xeon Quadcore E7330 microprocessor [28] running the gcc
benchmark from SPEC2000 [29] because it is known that gcc
exhibits a large spatial variation in temperature [30]. The E7330
processor has enough power and performance characteristics
to show the effect of the temperature. We use a performance
monitoring unit on the microprocessor to obtain activity counts
for each functional block [30]. Wattch estimates the power
consumption of a microprocessor using these activity counts,
and HotSpot generates a temperature profile using the power
consumption values from Wattch. We also consider the cir-
cular dependencies between HotSpot and Wattch have circular
dependencies.

We extract the parameters of the power model using HotSpot
and Wattch, and calculated the total power consumption at four
different die temperatures to verify our model. The result shown
in Table I compares the HotSpot simulation results with evalu-
ation of (8). The error between simulation result and analytic
prediction is less than 5%, which confirms appropriate param-
eter extraction.

IV. JOINT COMPUTATION AND COOLING POWER OPTIMIZATION

We address a joint optimization of cooling power and mi-
croprocessor power. Fig. 6 shows the framework for the com-
puting power and cooling power joint optimization. We intro-
duce an example with the air-cooled forced-convection heat sink
in Fig. 3 only. However, the same framework can accommodate
the liquid cooling case.

TABLE I
COMPARISON OF (8) WITH THE HOTSPOT SIMULATION

Fig. 6. The joint optimization framework for the computing power and cooling
power.

Fig. 7. Optimal cooling fan speed in thermal equilibrium.

A. Power Optimal Cooling Power for Continuous Execution

First, we consider a continuous task execution with a fixed
supply voltage and frequency. We derive the power optimal fan
speed. As illustrated in Fig. 7, both and are convex
functions of the fan speed. Thus, the total power consumption

is convex, so the optimal speed can be found where

(16)

or at the boundary of cooling device operating range.
For example, we can obtain the optimal fan speed for dif-

ferent supply voltage and operating frequency using analytical
model as shown in Table II. We use the parameter of an Intel
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TABLE II
VALUES OF OPTIMAL � TO MINIMIZE TOTAL POWER CONSUMPTION

Xeon Quadcore E7330 microprocessor assembled with a par-
allel-plate finned copper heat sink (70 mm 70 mm 50 mm)
and a 70 mm cooling fan.

B. General (Non-Real-Time) Workload With Continuous DVFS

We derive the total-energy-optimal fan speed together with
the supply voltage and frequency scaling for a given non-real-
time workload. The non-real-time workload in this section is
defined with a parameter which is the number of cycles
needed to execute the workload. The supply voltage can
be determined by the Alpha Power Law, which determines the
minimum possible voltage that guarantees a stable operation
of the microprocessor at frequency . We consider this min-
imum voltage when selecting the supply voltage among sup-
ported voltage setups specified in the datasheet. For a supported
clock frequency , the scaling factor can be obtained by di-
viding workload execution time at frequency by the execu-
tion time at the maximum frequency , which is given
by

(17)

Unlike previous DTM techniques, we have two control pa-
rameters that affect : and . Therefore, we have mul-
tiple feasible solutions which achieve the desired value of .
Among these feasible solutions, we find the energy-optimal pair
of . Either element of this pair may be
located outside the feasible range; the optimal solution may be
found at the boundary of the feasible range of each variables, or
both.

The total-energy-optimal fan speed control problem for a
non-real-time workload is defined as follows:

Problem 1: Find the energy-optimal cooling power and
scaling factor for a given non-real-time workload: minimize
the energy consumption including the cooling power per cycle
by controlling the fan speed together with supply voltage and
frequency scaling, which is given by

(18)

As long as is continuous, the optimal solution pair is deter-
mined as follows:

(19)

Fig. 8 illustrates the solution space of Problem 1. It shows
how the total energy consumption of the microprocessor and

Fig. 8. Energy consumption for a non-real-time workload on Intel E7330 mi-
croprocessor with voltage and frequency scaling and a cooling fan with the fan
speed control of air-cooled heat sink.

cooling fan varies with fan power and scaling factor for a given
workload. As an example, we demonstrate and for an
Intel Xeon Quadcore E7330 microprocessor assembled with a
parallel-plate finned copper heat sink (70 mm 70 mm 50
mm) and a 70 mm cooling fan. We set the operating range of the
processor from 1.87 GHz at 1.2 V to 3.00 GHz at 1.35 V. The
optimal solution which minimizes the total energy consumption
is found within the feasible range of the control variables. In
this example, the total energy consumption varies up to 5% with
different cooling power. It means that the cooling power control
is able to achieve energy saving without loss of performance.

In most cases, only discrete is available. The scaling factor
has several discrete levels in since the fre-

quency is discrete in practice. We obtain the optimal feasible
solution by selecting the pair which minimizes the
total energy consumption from

(20)

C. Stationary Periodic Real-Time Workload for Continuous
DVFS

This subsection derives the total-energy-optimal cooling so-
lution for periodic tasks: a task is a pair , where

is the workload and is the deadline. The task is a
stationary periodic real-time task, where and are con-
stant and known in advance. We consider the typical dynamics
of cooling fans such that the response time is in the order of
dozens of milliseconds or longer. Therefore, it is reasonable to
assume that we do not change the fan speed within a task exe-
cution period.

We start by considering the effect of the initial and final tem-
peratures for a sequence of scheduled tasks. The final tempera-
ture of a task instance becomes the initial temperature of the next
one. Conventional DTM often assumes that the initial tempera-
ture is an arbitrary value between the ambient temperature and
the thermal emergency temperature, and the final temperature is
forced to be lower than the initial temperature [4]. With a fixed
thermal resistance, the energy-optimal initial temperature of a
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Fig. 9. Effect of the initial temperature on a periodic task.

period for a stationary periodic task converges to , as shown
in Fig. 9(b), which is the steady-state temperature for a given
task. If we do not care about the energy-optimal steady-state
temperature for a given periodic task, it might result in over-
heating a processor, as shown in Fig. 9(a), or overcooling, as
shown in Fig. 9(c). The balance between the cooling power and
temperature-dependent leakage power is determined by the ef-
ficiency of the cooling device. To sum up, it is crucial to find the
energy-optimal when the thermal resistance is fixed.

The thermal resistance of the forced convection cooling de-
vice strongly depends on the velocity of the air. It is very hard
to control the fan or pump speed precisely within a task period
due to the physical limitations. We restrict that the fan or pump
speed cannot change within a task period, which is a practical
assumption. Thus, we also assume that it is hard to control the
thermal resistance of the cooling device in a task period and the
value is fixed during a task execution.

Assumption 1: Slow fan dynamics: the fan is too sluggish to
update its speed promptly at each period.

The total-energy-optimal fan speed control problem for a pe-
riodic task is defined as follows:

Problem 2: Find the energy-optimal steady-state pair
: for given and , determine the energy-optimal

values of , and under the thermal constraint.
The energy-optimal steady-state temperature at the end of a

period is obviously the same as its energy-optimal temperature
at the start of the period: this follows from the definition of the
steady state, which is . We determine
for each pair to solve Problem 2. From (5) and (6),
we represent as a function of , and .
The steady-state temperature is found by solving the fol-
lowing equations:

(21)

with the constraint that the peak temperature has to be
lower than the thermal emergency temperature . The ex-
ecution time is equal to . What (21) shows is
the following: 1) temperature change and the peak temperature
within a task period, 2) the condition for the starting tempera-
ture and the end temperature to be the same. The die temper-
ature after time is derived by (1)–(8) once the initial temper-
ature, gradient of the initial temperature, and CPU power con-

Fig. 10. Energy consumption during one execution period for a periodic real-
time task running on the E7330 microprocessor using DVFS and different fixed
cooling fan speed of the air-cooled heat sink during the task period.

sumption are given. We derive a closed form solution by lin-
earizing the temperature dependent leakage. The first term in
(21) shows the peak temperature when the start and end temper-
atures are the same. The microprocessor reaches its peak tem-
perature when the task execution ends and the idle mode begins,
so the value is given as the first term in (21). The end tempera-
ture of a task period can be calculated by setting the initial tem-
perature as the peak temperature, and the time as the remaining
time in a task period after task execution finishes for function

. This end temperature value should
be the same as the start temperature of the task period, as shown
in the second term in (21).

Finally, we derive the optimal pair by de-
termining the energy consumption of each pair with its
corresponding , which is given by

(22)

As an example, we solve Problem 2 with
with the same microprocessor and the

air-cooled heat sink model in Section IV.B. We also set the
operating range of the E7330 processor from 1.87 GHz at 1.2 V
to 3.00 GHz at 1.35 V. The result is shown in Fig. 10.

D. Stationary Periodic Real-Time Workload for Discrete DVFS

This subsection introduces an online algorithm to derive
the total-energy-optimal fan speed together with the supply
voltage and frequency of the microprocessor. We consider
discrete DVFS for practical usage. It goes without saying that
the optimal solution of the continuous DVFS case in Problem
2 is not the optimal solution for the discrete DVFS case. The
optimal solution in the continuous domain may not be optimal
or feasible in the discrete domain.

Thus, we introduce an online heuristic algorithm of which so-
lution is close to the optimal based on the solution of Problem 2.
We use a control-theoretic approach to keep track of the total en-
ergy-optimal DVFS scaling factor and cooling fan speed. As we
assumed, we derive the optimal fan speed from Problem 2 and
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Fig. 11. Control-theoretic energy-optimal temperature-tracking DTM.

do not change the fan speed for the feedback control. Thus the
only control knob is . The detailed control policy is as follows:

1) For given and , obtain the energy-optimal and the
corresponding value of from (21) and (22). Among
the discrete levels of , select two adjacent values which
stabilize most closely to ; one of them converges to
a temperature higher than ( in Fig. 11), and the
other converges to a temperature lower than ( in
Fig. 11).

2) Fix the thermal resistance to achieve optimal temperature.
3) Operate the microprocessor at until the temperature of

the microprocessor exceeds .
4) If the estimated die temperature in the next period with cur-

rent scaling factor would be higher than and the esti-
mated die temperature in the next period with is lower
than , adjust the scaling factor to .

5) If the estimated die temperature in the next period with
level would be higher than , adjust the scaling

factor to minimum among which
does not make the peak temperature exceed when the
next cycle is operated at in the next period.

6) If the estimated die temperature in the next period with cur-
rent scaling factor would be lower than and the esti-
mated die temperature in the next period with is lower
than , adjust the scaling factor to at the beginning
of the next period.

7) Repeat procedures 4 to 6.
Fig. 11 is an example of the temperature profile produced by

this policy.

V. RELIABILITY ANALYSIS MODELS

The high die temperature not only results in an immediate
breakdown, but also degrades long-term reliability of a micro-
processor. The proposed energy-optimal thermal management
lowers the die temperature of the microprocessor compared
with the conventional DTM, and thus eventually enhances the
reliability.

In this section, we introduce models to evaluate the reliability
of a processor when we apply the proposed thermal manage-
ment to the microprocessor. The fundamental purpose of the
thermal management is to keep the processor from the operation
failure caused by the thermal emergency. Reliability is known

Fig. 12. The FIT values for five different lifetime reliability model with dif-
ferent average die temperature.

to be dependent on temperature. The proposed energy-optimal
thermal management tends to lower the temperature of the mi-
croprocessor with less system-level power consumption, which
eventually results in reliability enhancement.

Various reliability models of silicon devices have been in-
troduced so far including Electro Migration (EM), Stress Mi-
gration (SM), Time-Dependent Dielectric Breakdown (TDDB),
Thermal Cycling(TC), Negative Bias Temperature Instability
(NBTI) [31]. We use the RAMP model [32] to evaluate those
reliability models. RAMP represents the lifetime reliability of
the processor in terms of Mean Time To Failure (MTTF) with
following models:

(23)

where is the current density in the interconnect; is
for the critical current density needed for electromigration to
occur; are the value of the activation energy for
the electromigration and the stress migration to occur; is
the initial temperature of the device; is the Boltzmanns con-
stant; is the value of the Coffin–Manson exponent constant;
and are constant parameters based on [31].

The standard method for representing constant failure rates is
Failures in Time (FIT), which means the number of failures per

device operating hours. Fig. 12 shows the lifetime reliability
values from the RAMP model considering average die temper-
ature. As we can see, the die temperature strongly affects the
EM, SM, and TC. The thermal effect on the TDDB and NBTI
are relatively small.
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TABLE III
TOTAL POWER CONSUMPTION WITH OPTIMAL � AND BASELINE

VI. EXPERIMENT

A. Power-Optimal for Discrete Scaling Factors

In this section, we show the advantages of the proposed
DTM method over a conventional DTM scheme. The pro-
posed method can be summarized as follows. We analyti-
cally derive the total-energy-optimal from (8) for
the continuous execution at each scaling factor in the mi-
croprocessor model, as described in Section IV. Table III
summarizes the results and compares the total power con-
sumption of the baseline cooling points and the proposed
DTM which operates the cooling devices at the optimized
points. We use the same analytical model of Intel E7330
introduced in Section IV. The discrete scaling factors are

, and .
The cooling power of the baseline scheme is determined re-

garding the operating range of the microprocessor and phys-
ical constraints of the cooling devices. The fan in a common
air-cooled heat sink is usually capable of rotating at a few hun-
dreds revolution per minute (RPM) to a few thousands RPM.
The fan assembled in the Zalman CNPS-9700NT heat sink is
able to rotate at up to 2800 RPM [22]. The flow rate of a common
water-cooled heat-exchanger for desktop computers is up to 2 or
3 gallons per minute (GPM). The pump in the Thermaltake Big-
water770 is able to circulate the coolant at up to 2.2 GPM [25].
To take the average, we set the baseline speed at a 1400 RPM
and a 1.1 .

The results for the air-cooled heat sink and the liquid cooler
show different aspect. It turns out that the baseline for air-cooled
heat sink runs the microprocessor at a slower fan speed than
the optimum. If we increase the fan speed and thus the cooling
power of the heat sink, the total power consumption will be re-
duced. However, for the case of liquid cooling, the baseline flow
rate may incur overcooling. The power optimal flow rate is much
smaller than the baseline. In such a case, the liquid cooler con-
sumes more power than the optimal solution. Conventionally,
the cooling system has been designed under the consideration
of the power consumed by itself. As the temperature-depen-
dent leakage power is continuously increasing, the relation be-
tween the temperature-dependent leakage power and the cooling
power need to be considered.

Fig. 13. DVFS scheduling result and temperature profile of a conventional
threshold temperature triggered scheduling approach.

Fig. 14. DVFS scheduling result and temperature profile of the proposed op-
timal temperature tracking scheduling approach.

B. Control-Theoretic Energy-Optimal DTM With Discrete
DVFS

We further perform a simulation of the proposed con-
trol-theoretic algorithm in Section IV-D to illustrate the
difference between our approach and the baseline DTM.
The task for the experiment has cycle workload
and 40 ms execution period. We also use scaling factors of

, and for the
discrete DVFS scheduling. Figs. 13 and 14 show how our
method maintains the die temperature at a lower value than the
thermal emergency temperature of the baseline DTM.

In the proposed approach, we analytically derive the energy
optimal from (8) for a given task as described in
Section IV. Then the control-theoretic algorithm adjusts the
scaling factor to track the energy-optimal temperature. The
baseline DTM method only uses a microprocessor throttling to
avoid the thermal emergency. The baseline DTM scheme op-
erates the microprocessor at the energy-optimal speed without
considering the effect of temperature until the die temperature
reaches a thermal emergency temperature, and periodically
adjusts the scaling factor to avoid thermal emergency.

The baseline DTM results in relatively high die temperature
compared to the proposed scheme because it controls the die
temperature only when the emergency temperature has been
reached on the basis of avoiding thermal emergency. The task
for the experiment is the same as the example in Section VI-A.
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Fig. 15. Normalized FIT values for five different lifetime reliability models
with the emergency temperature-triggered thermal management and energy-op-
timal temperature tracking thermal management using the parameters of the
E7330.

A die temperature of 68 C minimizes the total energy consump-
tion, and running the system at this temperature leads to 8.2%
energy saving than running it at the threshold temperature of
95 C.

C. Reliability Analysis

We evaluate the lifetime reliability of the baseline DTM and
proposed DTM by analyzing the result of the experiment in
Section VI-B. If we use the baseline emergency temperature-
triggered DTM with average cooling power, the die temperature
may increase up to the emergency temperature which is higher
than the energy-optimal temperature, and the high die temper-
ature deteriorates the reliability of the microprocessor. On the
other hand, we can achieve reliability enhancement as well as
power reduction with the proposed scheme because it keeps the
die temperature around the energy-optimal temperature which is
lower than the emergency temperature. Fig. 15 shows normal-
ized FIT values for five reliability models. The baseline DTM
runs the cooling fan at 1400 RPM and uses scaling factors of

and , which results in average die temperature of 95 C.
The proposed energy-optimal DTM runs the cooling fan 2260
RPM and uses scaling factors of and , which result in av-
erage die temperature of 68 C. We see up to 84% FIT reduction
thanks to the lowered die temperature.

D. Temperature-Dependent Leakage Power Variation of Real
Microprocessor With the Fan Speed Control in the Air-Cooled
Heat Sink

Our analysis of the simulation results show that the energy-
optimal DTM significantly reduces the total power. Although
we justified the proposed idea by the simulation results, we also
make sure the feasibility of the proposed idea by performing
actual power measurement of two different real microproces-
sors, the Intel E6850 and Q9650 assembled with the Zalman
CNPS-9700NT heat sink.

Fig. 16 shows the measurement setup. We use high-preci-
sion measurement equipments including Agilent A34401 mul-
timeter, Tektronix TDS2024B oscilloscope, TX3 multimeter,
PS2521G power supply, Fluke 87III multimeter, and K-type
temperature sensor to measure the fan power and speed, ambient

Fig. 16. Experimental setup for Intel E6850 and Q9650 microprocessors and
Zalman CNPS-9700NT air-cooled heat sink.

Fig. 17. Power variation of Intel E6850 and Q9650 microprocessors with dif-
ferent temperature.

temperature, and microprocessor power supply current, respec-
tively. The fan speed can be calculated from the encoder pulse
output of the fan motor while the fan power is measured by the
multimeter. We use the Prime95 [33], which is a stress-test tool
based on fast Fourier transforms as the microprocessor work-
load. The die temperature is measured directly from the on-chip
thermal sensor in the microprocessor.

We vary the fan speed to measure the power consumption at
different die temperatures. If we decrease the fan speed while
the microprocessor performs the same workload, it increases the
die temperature of the microprocessor. On the other hand, if we
increase the fan speed when the microprocessor performs the
same workload, it may decrease the die temperature of the mi-
croprocessor. The result of the measurement shows the tradeoff
relationship between the temperature-dependent leakage power
and the cooling power consumption.

As shown in Fig. 17, the power consumption of the E6850
and Q9650 microprocessors with Prime95 workload increases
up to 18% and 22% respectively when the temperature of the mi-
croprocessors increases from 55 C to 95 C. The curve of total
power consumption against the fan speed is convex as shown in
Figs. 18 and 19. When compared to the power consumption at
the baseline fan speed, the power reduction of the E6850 and
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Fig. 18. Measured power consumption of the E6850 microprocessor and the
fan with different cooling fan speed.

Fig. 19. Measured power consumption of the Q9650 microprocessor and fan
with different cooling fan speed.

Q9650 is 4.4% and 9.6%, respectively. Note that the Q9650 mi-
croprocessor which is a quad-core processor using a 45 nm tech-
nology shows more temperature-dependent leakage power con-
sumption than the E6850 microprocessor which is a dual-core
processor using a 65 nm technology. This is because the higher
integration density and smaller device size tend to increase the
temperature-dependent leakage power consumption.

VII. CONCLUSION

This is the first paper that addresses the holistic energy opti-
mization considering both computation and cooling power. We
introduce a new dynamic thermal management (DTM) frame-
work such that the thermal resistance of an active cooling device
is a control variable. The goal of the proposed DTM is the total
power consumption minimization while avoiding the thermal
emergency. Our optimization framework derives the energy-op-
timal die temperature and tracks it as far as the throughput con-
straint is met, while conventional DTM maintains the die tem-
perature as close as possible to the thermal emergency temper-
ature to yield the maximum throughput. This enhances relia-
bility of the semiconductor device as well. Experimental re-
sults demonstrate an 8.2% total energy saving and more than
an 80% electromigration lifetime reliability enhancement. Our
new DTM framework can be applied to various sorts of active
cooling devices.

REFERENCES

[1] D. Shin, J. Kim, J. Choi, S. W. Chung, E.-Y. Chung, and N. Chang,
“Energy-optimal dynamic thermal management for green computing,”
in Proc. ICCAD’09, Nov. 2009, pp. 652–657.

[2] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in Proc. HPCA’01, 2001, pp. 171–182.

[3] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in Proc. of CASES’07, 2007, pp. 257–266.

[4] S. Zhang and K. S. Chatha, “Approximation algorithm for the tem-
perature-aware scheduling problem,” in Proc. ICCAD’07, 2007, pp.
281–288.

[5] S. Wang and R. Bettati, “Delay analysis in temperature-constrained
hard real-time systems with general task arrivals,” in Proc. IEEE
RTSS’07, 2007, pp. 323–334.

[6] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for
real-time tasks under thermal constraints,” in Proc. 15th IEEE Real-
Time and Embedded Technol. Appl. Symp., 2009, pp. 141–150.

[7] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proc. DAC’04, 2004, pp.
275–280.

[8] W. Liao, L. He, and K. M. Lepak, “Temperature and supply voltage
aware performance and power modeling at microarchitecture level,”
IEEE Trans. on CAD, vol. 24, no. 7, pp. 1042–1053, Jul. 2005.

[9] L. Yuan, S. Leventhal, and G. Qu, “Temperature-aware leakage mini-
mization techniques for real-time systems,” in Proc. ICCAD’06, 2006,
pp. 761–764.

[10] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bian-
chini, “Mercury and Freon: Temperature emulation and management
for server systems,” in Proc. 12th Int. Conf. Architectural Support for
Programming Languages and Operating Systems, 2006, pp. 106–116.

[11] A. Ferreira, D. Moss, and J. Oh, “Thermal faults modeling using a RC
model with an application to web farms,” in Proc. 19th Euromicro Conf.
Real-Time Syst., 2007, pp. 113–124.

[12] R. Mukherjee and S. O. Memik, “Systematic temperature sensor allo-
cation and placement for microprocessors,” in Proc. DAC’06, 2006, pp.
542–547.

[13] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive temperature-aware
dvfs,” IEEE Trans. n Computers, vol. 59, no. 1, pp. 127–133, 2010.

[14] J. Srinivasan and S. V. Adve, “Predictive dynamic thermal manage-
ment for multimedia applications,” in Proc. ICS’03, 2003, pp. 109–120.

[15] A. Merkel, F. Bellosa, and A. Weissel, “Event-driven thermal manage-
ment in SMP systems,” in Proc. TACS’05, 2005, pp. 1659–1664.

[16] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, and M.
R. Stan, “Accurate, pre-RTL temperature-aware design using a param-
eterized, geometric thermal model,” IEEE Trans. Computers, vol. 57,
no. 9, pp. 1277–1288, Sep. 2008.

[17] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in Proc.
DATE’07, 2007, pp. 1526–1531.

[18] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and man-
agement in VLSI circuits: Principles and methods,” in Proc. IEEE,
2006, vol. 94, pp. 1487–1501.

[19] R. J. Moffat, “Modeling air-cooled heat sinks as heat exchangers,” in
Proc. Semi-Therm’07, 2007, pp. 200–207.

[20] P. Teertstra, M. M. Yovanovich, and J. R. Culham, “Analytical forced
convection modeling of plate fin heat sink,” in Proc. Semi-Therm’99,
1999, pp. 34–41.

[21] K. Azar and B. Trabassoli, “How much heat can be extracted from a
heat sink,” Electronics Cooling, pp. 1–9, May 2003.

[22] Zalman CNPS-9700 NT User’s Manual, 2007.
[23] S. G. Kandlikar and W. J. Grande, “Evaluation of single phase flow

in microchannels for high heat flux chip cooling—Thermohydraurlic
performance enhancement and fabrication technology,” Heat Transfer
Engineering, vol. 25, no. 8, pp. 5–16, 2004.

[24] D. S. Steinberg, Cooling Techniques for Electroni Equipment. New
York: Wiley, 1980.

[25] Thermaltak BigWater770 User’s Manual, 2008.
[26] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for ar-

chitectural-level power analysis and optimizations,” in Proc. ISCA’00,
2000, pp. 83–94.

[27] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data,” in Proc. MICRO’03, 2003,
pp. 93–104.

[28] Dual-Core Intel Xeon Processor 7200 Series and Quad-Core Intel Xeon
Processor 7300 Series Datasheet, 2007.



SHIN et al.: ENERGY-OPTIMAL DYNAMIC THERMAL MANAGEMENT: COMPUTATION AND COOLING POWER CO-OPTIMIZATION 351

[29] Standard Performance Evaluation Corporation, CPU2000, [Online].
Available: http://www.spec.org/osg/cpu2000

[30] K. Lee and K. Skadron, “Using performance counters for runtime tem-
perature sensing in high-performance processors,” in Proc. IPDPS’05,
2005, pp. 232–239.

[31] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in Proc. ISCA’04, 2004, p.
276.

[32] RAMP: Reliability-Aware MicroProcessors, [Online]. Available: http://
rsim.cs.illinois.edu/ramp/

[33] Great Internet Mersenne Prime Search (GIMPS), [Online]. Available:
http://www.mersenne.org/

Donghwa Shin (S’05) received the B.S. degree
in computer engineering and the M.S. degree in
electrical engineering and computer science from
Seoul National University, Seoul, Korea, in 2005
and 2007, respectively. He is currently working
towards the Ph.D. degree in electrical engineering
and computer science at Seoul National University.

His research interest includes system-level thermal
and power management for embedded system and
portable electronic system design using next-gener-
ation power sources.

Sung Woo Chung (M’06) received the B.S. degree
in computer engineering and the Ph.D. degree in
electrical and computer engineering from Seoul
National University, Seoul, Korea, in 1996 and 2003,
respectively.

From 2003 to 2005, he was a Senior Engineer
with SoC R&D Center, Samsung Electronics. He is
currently an Associate Professor with the Division
of Computer and Communication Engineering,
Korea University. His research interest includes
thermal management and process variation support

for microprocessors.

Eui-Young Chung (M’06) received the B.S. and
M.S. degrees in electronics and computer engi-
neering from Korea University, Seoul, in 1988 and
1990, respectively, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 2002.

From 1990 to 2005, he was a Principal Engineer
with SoC R&D Center, Samsung Electronics. He is
currently an Associate Professor with the School of
Electrical and Electronic Engineering, Yonsei Uni-
versity. His research interest includes system archi-

tecture and VLSI design, including all aspects of computer-aided design with
the special emphasis on low-power applications and flash memory applications.

Naehyuck Chang (M’97–SM’05) received the
B.S., M.S., and Ph.D. degrees from the Department
of Control and Instrumentation, Seoul National
University, Seoul, Korea, in 1989, 1992, and 1996,
respectively.

He joined Department of Computer Engineering,
Seoul National University, in 1997, and is currently
a Professor with the Department of Electrical
Engineering and Computer Science, Seoul Na-
tional University. His current research focuses on
low-power embedded systems, thermal management

of large-scale computing systems, next-generation energy sources, and elec-
trical energy storage systems.

Prof. Change is a Senior Member of ACM. He serves (and served) on the
Technical Program Committee in many EDA conferences including DAC,
ICCAD, ISLPED, DATE, CODES+ISSS, and ASP-DAC. He was a TPC
(Co)-Chair of RTCSA 2007, ISLPED 2009 and ESTIMedia 2009 and 2010. He
is General Vice-Chair of ISLPED 2010. He is currently an Associate Editor of
IEEE TCAD and ACM TODAES, and a Guest Editor of ACM TECS and ACM
TODAES in 2010 for real-time multimedia systems and low-power systems,
respectively. He served as the Chair of ACM SIGDA Low-Power Technical
Committee for 2008 and 2009. He is ASP-DAC SIGDA Representative and
serves on the ACM SIGDA Executive Committee (Technical Activity Chair).


